【摘要】近年来,深度学习在人工智能领域表现出优异的性能。基于深度学习的人脸生成和操纵技术已经能够合成逼真的伪造人脸视频,也被称作深度伪造,让人眼难辨真假。然而,这些伪造人脸视频可能会给社会带来巨大的潜在威胁,比如被用来制作政治虚假新闻,从而引发政治暴力或干扰正常选举等。因此,亟需研发对应的检测方法来主动发现伪造人脸视频。现有的方法在制作伪造人脸视频时,容易在空间上和时序上留下一些细微的伪造痕迹,比如纹理和颜色上的扭曲或脸部的闪烁等。主流的检测方法同样采用深度学习,可以被划分为两类,即基于视频帧的方法和基于视频片段的方法。前者采用卷积神经网络(Convolutional Neural Network,CNN)发现单个视频帧中的空间伪造痕迹,后者则结合循环神经网络(Recurrent Neural Network,RNN)捕捉视频帧之间的时序伪造痕迹。这些方法都是基于图像的全局信息进行决策,然而伪造痕迹一般存在于五官的局部区域。因而本文提出了一个统一的伪造人脸视频检测框架,利用全局时序特征和局部空间特征发现伪造人脸视频。该框架由图像特征提取模块、全局时序特征分类模块和局部空间特征分类模块组成。在FaceForensics++数据集上的实验结果表明,本文所提出的方法比之前的方法具有更好的检测效果。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《重庆高教研究》 2015-06-25
《中外医疗》 2015-07-06
《重庆高教研究》 2015-07-01
《重庆电子工程职业学院学报》 2015-07-02
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点